Written DescriptionThe base is a circle of radius 2 centered about the origin. The cross sections perpendicular to the x -axis are squares.	Draw and label the base. Draw the bottom of one of the slices. $\begin{array}{c} y \\ \hline \\$	Draw one slice and label its dimensions.	Write the integral for the volume.
The base is a circle of ra- dius 2 centered about the origin. The cross sections perpendicular to the <i>x</i> -axis are equilateral triangles.	$\begin{array}{c c} y \\ \hline \\$		
The base is a square with vertices at the points (-2, -2), $(-2, 2)$, $(2, -2)$, and $(2, 2)$. The cross sections are rectangles of height $f(x) = -x^2 + 4$ and are perpendicular to the x- axis.	$\begin{array}{c c} y \\ \hline \\$		
The base is the region en- closed by $y = x^2$ and $y = 3$. The cross sections perpendicular to the <i>y</i> -axis are squares.	$\begin{array}{c c} y \\ \hline \\$		
The base is the parabolic region $x = y^2$ and $x =$ 3. The cross sections per- pendicular to the <i>x</i> -axis are right isosceles triangles whose leg lies in the region.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Written Description	Draw and label the base. Draw the bottom of one of the slices.	Draw one slice and label its dimensions.	Write the integral for the volume.
The base is a circle of ra- dius 2 centered about the origin. The cross sections perpendicular to the x -axis are squares.	$y \\ x^2 + y^2 = 4$	ex	$\int_{-2}^{2} \left(2\sqrt{4} - \chi^2\right)^2 d\chi$
The base is a circle of ra- dius 2 centered about the origin. The cross sections perpendicular to the <i>x</i> -axis are equilateral triangles.	y $X_{i+}^{2} y_{i}^{3} = 4$ $2y$ x	$h = \sqrt{3(4 - x^{2})^{2}} - (\sqrt{4 - x^{2}})^{2}$	$\int_{-2}^{2} \frac{1}{2} (2\sqrt{4} - x^2) (\sqrt{3} (4 - x^2)) dx$
The base is a square with vertices at the points (-2, -2), (-2, 2), (2, -2), and $(2, 2)$. The cross sections are rectangles of height $f(x) = -x^2 + 4$ and are perpendicular to the x- axis.	$\begin{array}{c c} y \\ \hline 1 \hline$	-x ² +4	$\int_{-2}^{2} 4(-x^{2}+4) dx$
The base is the region en- closed by $y = x^2$ and $y = 3$. The cross sections perpendicular to the y-axis are squares.	$\begin{array}{c} y \\ \hline \\$	25y 25y Day	$\int_{0}^{3} (2\sqrt{3y})^{2} dy$
The base is the parabolic region $x = y^2$ and $x =$ 3. The cross sections per- pendicular to the <i>x</i> -axis are right isosceles triangles whose leg lies in the region.	$\begin{array}{c} y \\ x \\ z \\ y \\ z \\ y \\ z \\ y \\ z \\ z \\ z \\ z$	25x 25x ~ Ax	$\int_{0}^{3} \frac{1}{2} (2\sqrt{x})^{2} dx$